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Abstract—Virtual environments for development, sim-
ulation, and validation of robot applications are indis-
pensable, constituting a cheap, safe, and often faster
alternative to working with real-world vehicles. Conse-
quently, the scope of this paper covers the design and
implementation of such an environment geared to the
needs of smaller scaled autonomous driving applications
based on a robot operating system architecture.

Index Terms—Autonomous Driving, Simulation, Robot
Operating System, Vehicle Dynamics, Robotics

I. INTRODUCTION

In an era of rapid technological advancements, the
quest for autonomous driving (AD) has emerged as a
pivotal challenge in the realm of computer engineering.
With the aim of increasing vehicle safety, optimizing
traffic flow, and revolutionizing transportation systems,
researchers and engineers have turned their attention
toward developing intricate algorithms capable of en-
abling vehicles to navigate and operate autonomously.
But achieving autonomy comes at the cost of increas-
ing algorithmic complexity and corresponding valida-
tion.

While the commercial automotive industry offers
extensive and powerful ecosystems for developing and
validating AD algorithms — often advertised for their
certification capabilities — their feature set and com-
plexity are often excessive for smaller scaled projects
where such aspects are less relevant.

Therefore, the objective of this paper is to investigate
the feasibility of a practical, functional, and easy-
to-use framework that supports the efficient develop-
ment, simulation, and validation of AD algorithms for
smaller scaled applications.

The resultant environment is presented in the context
of the autonomous model vehicle depicted in Figure 1.
This vehicle’s software stack is built on top of the
robot operating system (ROS) and its sensor suite
encompasses a stereo RGB camera for lane and object
detection, two reflectance sensors to measure the wheel
speeds of the front left-hand and front right-hand
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Figure 1. The real-world vehicle serving as the basis for the digital
counterpart. Source: [1]

wheels, respectively, and an inertial measurement unit
(IMU) capturing rotation and acceleration [2].

The remainder of this paper is structured as follows:
Section II investigates currently available simulation
and development frameworks relevant to the objec-
tive of this work, and section III outlines the driv-
ing factors behind the development, simulation, and
validation environment presented in this paper. The
environment’s goals and objectives are subsequently
highlighted in section IV. Continuing with Section
V, the conceptual ideas behind the environment are
discussed, followed by the actual implementation in
section VI. An overview of the resultant environment
can be found in section VII. Finally, section VIII and
IX will conclude the paper and provide an outlook,
respectively.

II. RELATED WORK

J. Collings et al. provide an overview of numerous
physics-based simulators for robotics applications [3]:

The AirSim simulator features simulated environ-
ments powered by Unreal Engine and is focused on
the simulation of aerial vehicles such as drones, but
also features support for wheeled vehicles [4]. Due
to being built on top of Unreal Engine, AirSim can
portray environments with a high degree of realism,
lending itself well to generating camera-based training
data for machine vision applications. In addition to
cameras, sensors such as IMU, GPS, and barometer
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are part of its supported sensor suite [4]. AirSim can
serve as a simulation and development environment
on all major operating systems, i.e. Linux, Windows,
and MacOS. First published in 2017, it is scheduled
to be archived in 2024 and will be replaced by Project
AirSim [5].

Arguably the most well known simulator is Gazebo.
Being maintained by Open Robotics, Gazebo possesses
good integration with ROS. The Gazebo simulator
incorporates an accurate physics simulation and a wide
range of sensors, such as IMU, LiDAR, and camera
[6, 3], although its suitability for high-fidelity image
generation is limited compared to Unity- or Unreal
Engine-based simulations [3]. In addition, if the ex-
isting array of sensors is insufficient, Gazebo features
a plugin system through which new sensors can be
implemented. In terms of cross-platform functionality,
Gazebo is best suited for a Linux-based operating
system (OS). Windows operating systems are only
supported by the community, hence full functionality
is not officially guaranteed [7].

A popular alternative to Gazebo is CoppeliaSim,
a versatile and scalable robot simulation framework
[8]. Worth mentioning is CoppeliaSim’s capability to
embed functionality directly within its environment
using Lua scripting, additionally making it a powerful
development environment. Moreover, like Gazebo, it
features a large array of preimplemented sensors but
also lacks sophisticated realistic rendering [3]. Note-
able is the inclusion of a path planning module that can
handle non-holonomic vehicles like cars. Similarly to
AirSim, this simulation framework supports all major
operating systems, although with the disadvantage of
not being free for commercial use.

Alternatively, NVIDIA Isaac Sim is a high-fidelity
robotics simulator built on Omniverse, offering PhysX-
powered physics and ray-traced rendering for realis-
tic sensor simulation [9]. Unlike Gazebo and Cop-
peliaSim, it excels at photorealistic perception data
generation, making it ideal for AI-based applications.
However, it requires NVIDIA GPUs for optimal perfor-
mance and is primarily optimized for Linux, limiting
its versatility compared to cross-platform alternatives.

Lastly, [10] derives a framework for vehicle control
and simulation based on ROS and Unity, leveraging
ROSBridge for cross-communication between the two
tools. Through two validation use cases, [10] details
their framework’s support for non-holonomic robots
and sensors such as LiDAR. Also described in the
paper is a quite extensive manual setup process for
the proposed framework. Finally, it is not immedi-
ately clear whether the introduced framework is cross-
platform.

III. MOTIVATION

The motivation underpinning this research stems
from several key challenges that pervade the landscape

of embedded development, specifically the develop-
ment of autonomous driving algorithms:

1) Limited Hardware Availability: The tangible
constraints of time, resources, and safety con-
siderations impede the expansive deployment of
autonomous vehicles for rigorous real-world val-
idation and testing.

2) Demands of AI-based Algorithms and Train-
ing Data: The potency of AI-based autonomous
driving algorithms hinges on the acquisition and
use of substantial training data. However, gen-
erating such data manually through the physical
vehicle proves to be an arduous undertaking.

3) Cumbersome Iterative Development Process:
The iterative process of coding, deployment,
observation, and data retrieval with a physical
vehicle can be cumbersome and time-consuming.

IV. GOALS

The goals defining the environment’s scope are the
following:

1) Minimal Setup: The creation of a user-friendly
standalone desktop application with as few de-
pendencies as possible and a minimal setup.

2) Cross-Platform: Whether a user or developer
works on Windows or Linux operating systems,
cross-platform capability ensures that they can
harness the environment irrespective of their OS.

3) Extensible and Modular Architecture: A flex-
ible, modular design, allowing easy integration
of new components and features, is an essential
objective of the environment. This ensures adapt-
ability and simplifies future enhancements.

4) Testing and Validation of Vehicle Software:
An important goal is to provide a platform for
rigorous testing and validation of the vehicle
software stack. The vehicle software stack should
be testable as-is to the extent feasible.

5) Iterative Prototyping of Vehicle Algorithms:
Rapid modification, implementation, and evalu-
ation of new algorithmic approaches foster an
environment that encourages innovation and ex-
perimentation.

V. CONCEPT

Figure 2 illustrates the high-level architecture of the
development, simulation, and validation environment
derived in this work. Focusing on the simulation as-
pect, the structure can be roughly divided into two
parts.

The first part is realized by the Unity game engine
which is responsible for simulating the vehicle and its
surroundings. Additionally, to create an easily exten-
sible and modular architecture, an operating system
framework, residing inside the simulator itself, has
been conceptualized. Besides controlling the simulator
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Figure 2. The architecture of the environment on a Windows OS.
On a Linux OS the block “Windows Subsystem for Linux” is not
present.

and managing the communication with the vehicle
software stack, its purpose is to offer a common, homo-
geneous interface for future extensions while avoiding
some common pitfalls with a potentially ever-growing
set of features:

The user interface can become cluttered and difficult
to navigate. Icons, buttons, and menus can start com-
peting for screen space, making it harder for users to
find the functions they need. Moreover, new features
can potentially introduce performance bottlenecks, es-
pecially if they require extensive processing power
or memory usage. Finally, users may also become
overwhelmed by the sheer number of features, not
knowing where to start or how to use the software
effectively.

The second part uses Docker to containerize the
vehicle software stack. This ensures cross-platform
readiness and also automates the installation of the
vehicle software stack and its dependencies.

Under the hood, communication between the simu-
lated environment and the ROS-based vehicle software
stack operating inside the Docker container is achieved
by Unity’s ROS-TCP-Connector. Through it, sensor
data will be channeled into the software stack and
actuator data will, in turn, be captured and applied
to the vehicle simulation by leveraging ROS’ topic-
based communication. Notably, this connector employs
a separate TCP socket through which binary data is
transceived, making it substantially faster than ROS-
Bridge’s JSON-based approach [11]. Finally, it’s worth
mentioning that any vehicle software stack that is
compatible with the simulator’s ROS topics can be
integrated.

Figure 3. The simulator as visible inside Unity’s scene view.

Surrounding the simulation component is the de-
velopment and validation environment. The former
is largely enabled by Visual Studio Code and its
Docker integration, whereas the latter relies on the
well-established suite of validation and analysis tools
provided by ROS itself to enable testing and verifica-
tion of vehicle algorithms.

VI. IMPLEMENTATION

The simulated environment (simulator) comprises a
flat plane with a basic road network consisting of city
streets, a roundabout, pedestrian crossings, as well as
a highway and a country road section mapped on top,
as seen in figure 3. This constitutes the static world
of the simulated environment. Environmental effects
such a rain, wind, or fog are not taken into account.
Located within the static world is the simulated vehicle
depicted in the lower center.

A. Operating System

Figure 4 shows a simplified class diagram of the
operating system. Its user interface (UI) is imple-
mented using Unity’s UI Toolkit. The entry point is
the singleton OperatingSystem which possesses
the capability to instantiate new applications via its
application programming interface (API):

Depending on the generic type parameter, the single-
ton dynamically constructs an appropriate application
instance, injecting the arguments parameter passed
into OpenWindow<TApplication>(...), using
C# reflection. Following the setup of the application,
it is embedded into a new Window instance, and
a TaskbarItem object is created. The latter two
components serve distinct roles:

• The TaskbarItem Class: When clicked via the
mouse, a taskbar item toggles the visibility of
the associated window and causes it to fire an
OnWindowEvent, transmitting the appropriate
WindowEvent value.

• The Window Class: Windows are the containers
for started applications. They can be minimized,
maximized, closed, resized, and moved freely
within the limits of the desktop environment.
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Figure 4. Simplified class diagram of the operating system.

B. Vehicle Simulation

The simulated vehicle is integrated into Unity’s
physics system. Its sensor sensor and actuator suite
encompasses the sensors (camera, IMU, and wheel
speed sensors) and the actuators (steering, motor, and
wheels).

The camera was implemented using a Unity cam-
era component with asynchronous GPU read-back to
mitigate frame drops. To read back the depth texture, a
custom shader pass, separating the depth element from
the camera render into a separate texture, is executed
prior. The color and depth frames are consequently
published via the ROS-TCP-Connector at a rate of
30Hz.

The IMU’s acceleration is measured via Unity’s
Rigidbody.GetPointVelocity(...) API and
the orientation is retrieved through the GameObject’s
transform component. Subsequently, the information is
published on the ROS network at a rate of 70Hz.

Similarly, the wheel speed sensors also use the same
rigidbody API to retrieve the velocity at the respective
wheels and publish it with a frequency of 100Hz.

The simulated vehicle uses front-wheel steering with
an Ackermann geometry. There is no dedicated motor
simulation. Instead, the torque is applied directly to
a custom wheel component that applies the forces
shown in Figure 5. The implementation of the wheel
component is largely based on [12]. The suspension
force FS (seen on the left) emulates the suspension of

v

vslip

vroll

FT
FR

r

TFN

kFS

x

d

Figure 5. The wheel forces from left to right: Suspension force FS ,
Rolling force FR, Turning Force FT

the wheel and is modeled as a spring-damper system
by

FS = k · x− ẋ · d (1)

whereas x refers to the spring’s displacement from
rest, and k and d the spring and damper stiffnesses,
respectively. Depicted in the center, the rolling force
FR converts the applied torque into a force through
the radius of the wheel. Additionally, friction is taken
into account by applying a force proportional to the
normal force and directed against the rolling direction.
crr in the equation 2 refers to the coefficient of rolling
resistance, and the normal force FN can be computed
using equation 1.

FR =
T

r
− sign(vroll) · FN · crr (2)

While not implemented, one could adaptively adjust
crr based on the contact surface to simulate various
surface conditions.

Lastly, the turning force FT originates from the fact
that a wheel prefers to rotate around its mounting axle.
Any movement parallel to this axle results in the wheel
slipping or scraping along the surface and is therefore
opposed. Equation 3 models this behaviour by applying
a force opposite to the slip velocity of the wheel.

FT = −m · vslip
t

(3)

One critical aspect is to ensure that the aforemen-
tioned equations are calculated with sufficient fre-
quency. If the forces are computed too sporadically, the
wheel simulation breaks down due to instability. The
computational frequency is largely governed by Unity’s
physics time step, which has been set to 200Hz.

C. Simulator-Aware ROS Nodes

One of the objectives of the simulator is to test the
software in its unaltered state. However, achieving this
objective encounters limitations, particularly regard-
ing features that interface with real-world hardware
embedded within the vehicle such as sensors and
actuators. In light of this, it becomes clear that the
environment must incorporate mechanisms that enable
ROS nodes to detect the simulator.
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Table I
MECHANISMS FOR SIMULATOR-AWARENESS.

Language Mechanism

CMake if(DEFINED SIMULATOR)
# ...

endif()

C/C++ #ifdef SIMULATOR
// ...

#endif

Python import rospy
name = "SIMULATOR"
if rospy.has_param(name):

# ...
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Figure 6. The multi-stage dockerfile and its dependents.

Table I presents the mechanism implemented for
each language. The CMake and C/C++ mechanisms
are enabled by passing the appropriate CMake argu-
ments via catkin config --cmake-args dur-
ing setup of the catkin workspace. Python utilizes the
ROS parameter server to make nodes simulator-aware.

D. Docker Container

The Docker container is set up using the multi-stage
dockerfile seen in figure 6. As visible, there are
two stages:

1) Dev Stage: Based on ROS’ official Noetic im-
age, various dependencies are installed, most of
them required for the image processing logic of
the vehicle. Additionally, the catkin workspace
is set up, and the mechanisms for simulator-
awareness are enforced here.

2) Run Stage: This stage inherits its contents from
the dev stage. Its main purpose is to copy the

Figure 7. The development, simulation, and validation environment.

vehicle software, build it, and run the resulting
ROS network.

VII. RESULTS

Figure 7 shows the development, simulation and
validation environment in which the existing ROS
toolkit is used to analyze the IMU messages published.

The upper half of the figure is taken up by the
simulator itself. The lines originating from the center
of the vehicle visualize the accelerations perceived by
the vehicle. The two applications seen in the upper
left-hand corner are, from top to bottom, ROS which
manages the connection established over Unity’s ROS-
TCP-Connector, and the inspector which can show cus-
tom information about objects present in the simulated
environment. The latter application currently displays
information about the simulated vehicle. Lastly, the
application in the bottom right-hand corner is used to
launch any of the available applications implemented
within the simulator’s operating system.

The lower half of the figure depicts Visual Studio
Code operating from within the docker container de-
tailed in section VI. Embedded in the lower right-hand
corner is a terminal that runs the vehicle software stack,
and right next to it another terminal is used to run the
rqt application whose GUI is placed in the center of
the integrated development environment (IDE). rqt
itself harnesses the rqt_plot plugin to visualize the
individual IMU messages published by the simulator
topic over time.

VIII. CONCLUSION

This paper detailed a comprehensive development,
simulation, and validation environment for ROS-based
autonomous driving algorithms.
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Initially, the conceptual ideas behind the environ-
ment were presented. Through the use of Docker and
OS-agnostic software, it could be demonstrated that
a single unified architecture can support developers
and researchers across multiple operating systems. The
simulator was designed with extensibility, modularity,
and ease of use in mind, aspects largely facilitated
by the introduced operating system. Additionally, the
custom vehicle simulation ensures complete control
over the vehicle’s driving dynamics.

Lastly, the development and validation qualities of
the environment were presented, highlighting the syn-
ergy between the simulator and the existing ROS tools.
Practical experience has shown that new users were
able to familiarize themselves with the environment
and be productive within days. Additionally, a notice-
able speedup in development of the underlying vehicle
software could be observed.

IX. FUTURE WORK

Although the development, simulation, and valida-
tion environment already accelerates the development
of the underlying ROS software tremendously, the
general workflow could be further improved by re-
moving the need to recompile the ROS network after
each modification. This could be accomplished by
employing a scripting environment inside the simulator
that harnesses the ROS-TCP-Connector to publish data
directly into the ROS network, circumventing the need
for a recompile.
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